

THWARTING FAILURE IN MOBILE AGENT SYSTEM USING

ANTECEDENCE GRAPH APPROACH

RAJWINDER SINGH AND MAYANK DAVE
Department of Computer Engineering,

 National Institute of Technology, Kurukshetra-136119, India
rwsingh@yahoo.com

ABSTRACT: Mobile Agent System (MAS) is an open multi agent system, in which mobile
agents can transport its state from one environment to another, with its data intact and capable of
performing in new environment. This technology gave biggest opportunity to internet based
applications. But fault detection and recovery is a vital issue in the deployment of MAS, whose
purpose is to provide a distributed computing infrastructure for supporting applications in which
components can move freely in heterogeneous environment without any hindrance. Despite the
considerable efforts spent on researching and developing Multi-Agent Systems there is a
noticeable absence of deployed systems. In the past the MAS research community ignored this
problem – arguing that it is not a genuine MAS problem and consequently of lesser importance
than other unsolved issues like cooperation, coordination, negotiation and communication. This
paper presents a Watchdog approach to discover communication failure during MAS execution
and recover it through parallel check pointing antecedence graph approach with low overhead. We
believe that introducing fault identification and recovery in a mobile agent system through
antecedence graphs is novel and provides a low overhead and effective solution for fault-tolerance
in a multi-agent system.

KEYWORDS: Mobile Agent System, Antecedence Graph, Fault Tolerance.

INTRODUCTION

MAS are decentralized self-organizing systems consisting of autonomous entities called mobile
agents that are an independent software program that runs on behalf of a network user. It can be
characterized as having more or less intelligence and it has the ability to learn. Mobile agents
(MA) add to regular agents the capability of traveling to multiple locations in the network, by
saving their state and restoring it in the new host [2]. During the execution of mobile agents,
communication and host failures lead to partial or complete loss of mobile agents or blocking of
execution. Therefore, fault tolerant protocols are fundamental in the development of mobile agent
systems in order to guarantee reliable execution of mobile agents [3].

The following undesirable scenarios may occur when MAs are sent from one host to another.
 Communication Failure: When mobile agent travels from one host to another, it never

reaches its destination, if the destination host has failed or there is a communication link
failure, implying that all routes between two hosts are disabled. Therefore, if mobile agent at
one agent host (AH) wants to travel to another, it will stop advancing to it and wait until the
communication link is enabled again. This is a communication failure.

 Agent Failure: When mobile agent travels from one host to another, it never reaches its
destination due to crashes or because it is terminated by some malicious host or agent. This is
agent failure.

197

 Agent Host Failure: The host platform, on which mobile agent resides, crashes or shuts down
unexpectedly, due to failures. Many mobile agents on the host may be in an inactive but
waiting state, due to the unavailability of external events. If more mobile agents migrate to this
host, it may run out of memory. This is AH failure.

In this paper we propose a monitoring and recovery approach, comprises of two main schemes:
Watchdog Agent (WA) schemes for monitoring and parallel check-pointing scheme for recovery.
In Watchdog monitoring scheme, the master agent overhears the internal and external parameters
of MAS. During recovery, in case of failure, using check-pointed information, the antecedence
graphs and message logs are regenerated for recovery and then normal operation will continue.
The rest of the paper is organized as follows. Section 2 introduces the work related to the main
topic of this paper. Section 3 describes the assumption related to proposed approach. Section 4
describes the proposed work, Section 5 gives details on experimental and performance evaluation
details and section 6 proves the correctness of proposed work. Finally, Section 7 presents the
conclusion and future work.

RELATED WORK

The Advanced Automation System (AAS) [16] is a distributed real-time system integrating all the
services of the US air traffic control network. The requirement on high availability for this system
causes to introduce both hardware and software redundancy. Here the critical services are
replicated using either the active or passive approach according to the application semantics and
hardware configuration. It also employs a reliable broadcast protocol maintaining the causal order
of messages exchanged between the group members and a combination of rollback-recovery
protocols.

Bondavalli et al. [8] proposed a framework for adaptive fault tolerance in real-time context. Their
work explicitly addresses the real time constraints and employs a flexible and adaptable control
strategy for managing the redundancy within the application software modules. Here the
programmers can specify fault tolerance strategies for the application modules, including adaptive
strategies taking into account available resources, task importance, deadlines and observed faults.
Hiltunen and Schlichting[9] introduced a general model for adaptive systems and presented some
examples of how this model can be applied for different scenarios. AFTM [12] is an adaptive fault
tolerant middleware based on CORBA-compliant object request broker. In AFTM the most
suitable fault tolerant and resource allocation scheme is dynamically selected through user
requests. It allows automatic reconfiguration of the groups and transparent masking of the faults.
Hägg [10] presented an approach for fault tolerance in which sentinel agents monitor inter-agent
communication, build models of other agents and take corrective actions. Because the sentinels
analyze the entire communication occurred in the system to detect state inconsistencies, their
overhead could be high and they can be additional points of failures themselves.

Decker et al. [11] proposed different levels of adaptation, and concentrate only on execution
adaptation where agent cloning is used for load balancing.

Kumar et al. [12] described the agent-based brokers’ fault tolerant architecture, and the adaptation
mechanism based on the feedback control real-time scheduling was proposed by Stankovic et al.
[8].

198

Guessoum et al. [17] presented an adaptive multi-agent architecture with both agent level and
organization level adaptation. The organization’s adaptation is based on the monitoring of the
system’s behavior. Here the software components can be either replicated or un-replicated, and it
is possible to change the replication strategy at run time.

Fedoruk and Deters [18] implemented transparent replication via proxies which handle the
communication between the replicas and other agents in the MAS. Also, the proxy controls the
execution of the replica group. They chose FIPA-OS agent toolkit as a platform for their
implementation. As FIPA-OS does not support any replication mechanism, the replication server
was implemented as a standard FIPAOS agent. Kraus et al.[13] described the problem of fault
tolerance as a deployment problem, and proposed a probabilistic approach deploying the agents in
a multi-agent application.

Dong Yeol Lee et al. [2] propose a monitoring and replication scheme answering the questions
above. It makes a decision on the replication in the point of data. The monitoring scheme is used to
acquire detailed and accurate information related to the status of the agents such as the amount of
load, task length, and role. One agent called agent leader gathers the information on the status of
the agents in the system, merges the information, and then sends them to the platform. The
collected information is used by the replication decision scheme residing in the agent container of
the platform to make a decision on the agents required to be replicated or replaced (also the agent
replacing it).

ASSUMPTIONS

 Before Execution of mobile agents, MAS is tested and all the agents are working properly.
 Each host has its antecedence graph which is maintained to check whether all agents are inter-

connected via communication links.
 A watchdog or the master agent that will monitor internal and external parameters of each and

every mobile agent on agent hosts.

PROPOSED APPROACH FOR MONITORING AND RECOVERY IN MOBILE AGENT
SYSTEM

In this section, we present a different approach that facilitates mobile agent system to detect and
mitigate failure occurs at run time. For monitoring or detecting failure, we use watchdog approach.
The main goal of using watchdog approach is to make system fault tolerant at execution time.
Watchdog agent is an active agent in a collaborating group of n numbers of mobile agents
performing similar types of operation. The watchdog agent does this by listening promiscuously to
the link and the expected behavior of mobile agents. It keeps the record of internal and external
states in the form of tables and checkpointing information in the form of antecedence graph. For
recovery, we use parallel checkpointing antecedence graph approach, the antecedence graph
information is accessible to the mobile agents and watchdog agents which requires information for
checkpoint.

Watchdog Approach for Monitoring
During the execution, MAS is vulnerable with the faults such as software bugs, system crashes,
shortage of resources or failures in the communication links because it operates in a distributed
system environment while providing the users with various services [20]. Also, a fault in mobile

199

agent can propagate through the system and cause the overall system to fail [19]. In order to
prevent the MAS from stopping the operation because of the occurrence of any fault, we proposed
a fault tolerant approach. In proposed approach, a watchdog agent is an active agent in a
collaborating group of n numbers of mobile agents that keeps the record of internal states such as
CPU usage, memory load and external states such as communication load, exact location of
mobile agent and the number of requested messages. Now, based on the type of fault and position
of mobile agent at the instant of fault occurrence, we proposed a methodology explained below.

Communication Failure. When a mobile agent travels from one host to another, it never reaches
its destination, if the communication link fail, implying that the route between two hosts are
disabled. Due to link failure, agents are unable to deliver the status information. Watchdog agent
helps them to recover depending on the position of mobile agent at the time of failure.

Case 1: Mobile agent has just started travelling on its way to destination and link fails
somewhere in between source and destination host.
Case 2: Mobile agent is nearly or exactly at the position of link failure.
Case 3: Mobile agent has arrived to its destination host and links fails afterward.

In case 1 listed above, watchdog agent will roll back the process to the recent checkpoint and
sends the updated antecedence graph to source agent host for alternate path. In case 2, mobile
agent may lost due to link failure and watchdog agent may or may not able to find the lost mobile
agent. Hence, it automatically initiates recovery process explained in section 4.2 and intimate the
same to agent host and agent server about recovery process via communication links as shown in
Fig.1. In case 3, watchdog agents sends updated antecedence graph to all hosts to choose an
alternate path for sending and receiving status information.

Fig.1 Proposed Fault Tolerant approach

200

Mobile Agent Failure. Mobile Agent Failure occurs, when destination hosts fails or terminated by
malicious agent or host. Watchdog agent match the mobile agent’s outputs by expected output, if
any unexpected behavior will be noticed, it will immediately start recovery process explained in
section 4.2 and also inform to agent host and agent server for replacement via communication
links as shown in Fig.1.

Agent Host Failure. Agent Host Failure occurs, when the host platform on which a mobile agent
resides, crashes or shuts down unexpectedly. Many mobile agents on the host may be inactive or in
waiting state due to unavailability of external events. A watchdog agent discovers the failure by
examining its internal parameters and informs the same to agent server through communication
links as shown in Fig.1.
The next sub-section presents the check-pointing approach for recovery using antecedence graph.

Check-pointing Approach for Recovery using Antecedence Graph
A parallel checkpointing algorithm is used to checkpoint the antecedence graphs of individual
mobile agents in the multi agent group. Parallel signifies that all the collaborating agents can take
checkpoint synchronously and the checkpointed antecedence graphs are then stored into stable
storage which is ultimately used for recovery and fault tolerance. The main goal of using parallel
check-pointing approach for recovery is to reduce message overhead, execution, and recovery
times.

Checkpointing Algorithm. In this check-pointing algorithm, each checkpoint is associated with a
unique sequence number. The sequence number of each mobile agent (MA) increases
monotonically and the jth checkpoint of MAi is denoted as Ci,j. The sending and receiving events
of message (Ω) are denoted as send (Ω) and receive (Ω), respectively.

The dependent agents (DA) are the active agents of the collaborating group of n number of mobile
agents performing the operation. These dependent agents stores each mobile agent in form of hosts
in antecedence graphs. The stored information is accessible to the watchdog agents and mobile
agents which requires for the checkpoint from its antecedence graph. Whenever a fault occurs or
depth of antecedence graph exceeds certain threshold or after elapsing of certain time, mobile
agent (MA) and watchdog agent (WA) may request for check-pointing.

For requesting mobile agent MAj, (1 ≤ j ≤n), we set a variable Graph Depth (GDj), which is the
depth of requesting agent’s antecedence graph at initialization of check-pointing. At threshold
event, if MAj starts a checkpoint request and informs all DA of its antecedence graph. It carries out
this request through a MA called check Agent (CA) which is made for every DA during the start
of checkpoint agent and the time of sending check-pointing request to the DAs. When MAj sends
this request, it attaches with DA, a numeric weight of value (1/ mod (GDj)). In parallel the
requesting agent as well as DAs make temporary AGs of the events occurred during execution of
checkpointing operation. The time of this temporary logging is overlapped with actual execution
of the transaction and check-pointing and so it does not have any extra load for system and is
therefore non-blocking. Now all the dependent agents specified in the antecedence graph would
receive the inquiry message through CA and if they agree on check-pointing, they would send
back the numeric weight indicating positive response, to the starting agent. The received responses
from dependent agents are added together and if they equal 1, it means that all the relevant agents
have responded. In this moment, the request for changing the temporary checkpoint to the main
one is issued. But even if one of them responds back negatively, the checkpointing is canceled and

201

all DAs are informed. The distinctiveness of our scheme is that the checkpoint request is
distributed through all the agents in a parallel manner.

Finally, if the starting agent received the positive response from all the dependent agents, it makes
the real checkpoint and informs the others, respectively. The agent host (AH) is then sent the final
checkpointed antecedence graphs by starting as well as by dependent agents. At AH the maximum
length graph from these individual agents us constructed and stored in stable storage. After final
checkpointing, the previous antecedence graphs are deleted which considerably reduces the size of
the graph piggybacked on the message thereby helping to maintain the efficiency of algorithm in
scenario where large number of agents participate in performing a transaction. After successful
completion of checkpointing, the involved agents for construction of new antecedence graphs may
continue from the temporarily saved antecedence graphs. In case of failure, the recovering agents
request the AH to send the maximum length antecedence graph and not individual agents as in
[15]. The recovering agent reconstructs its own graph from the received last maximum length
antecedence graph checkpointed and stored at AH. Once the AGs of agents have been
checkpointed, the agents now don’t have to piggyback the checkpointed AG, thus the message size
is considerably reduced. This in turn would reduce bandwidth consumption and cause speedy
executions.

Recovering Algorithm. In case of failure, the checkpointed state is used for recovery. The
checkpointed state here is the maximum length AG stored in the stable storage of AH. The
recovering agent follows the following steps for its recovery:

1. Request for maximum length AG from AH which has been the latest saved checkpointed AG.

In the existing approach in [15], the recovering agent has to request all the agents in multiagent
system for their individual AGs. But contrary to that, here the recovering agent requests only
AH for its AG. This in turn greatly reduces the recovery time and also eliminates the need to
wait for all MAs to reply with their respective AGs. Now having received the maximum length
AG from AH, the recovering agent constructs its own AG and uses it for recovery

Fig.2 Multiagent system with three agents

2. The recovering agents will now create a message log using the AG constructed through above

step. This message log will contain the necessary messages that need to be replayed to recover
the state of each failed agent. For example, in case the agents in Fig.2, the generated message
logs are shown below taking the cases for agent A and agent B as recovering and agent C as
non-recovering.

202

Message Log for agent A (Recovering)
receive m2 - send m3

Message Log for agent B (Recovering)
send m0 - receive m1 - send m2

Message Log for agent C (Non-Recovering)
receive m0 - send m1 - receive m3 - send m4

3. Using the AG and message log, messages required for recovery are replayed. This results in
achievement of global consistent state.

It is important to note that messages that are to be sent in the message log are not sent. Instead,
they are just present in the message log and follow “pull-based” strategy, i.e., a message is only
sent if requested. After recovery the normal operation continues.

EXPERIMENT AND PERFORMANCE EVALUATION

Experimental Detail
The proposed system of multiple agents performing in collaboration in a group (i.e., MAGs) has
been implemented on IBM Aglets over a network of systems with configuration of 1 GB RAM
and 3.2 GHz processor connected to 10/100 Mbps Ethernet.

To evaluate the effectiveness of the proposed approach, we developed an agent system that will
provide health care service provider in MAS. It consists of multiple agents for query. In order to
search the suitable hospital for patient, the system keeps database (name, department, the
symptoms of disease, and availability of emergency room) of all the hospitals in the city. To find a
suitable hospital, the agents query the agent server. The agent server has only one plan of matching
the request message to the hospital database instances, and returning the matched hospital
information.

Performance Evaluation
The above setup is run for gaining insight into the performance against the earlier discussed
parameters for the existing replication decision mechanism for service-oriented multi-agent system
and proposed watchdog approach for fault tolerance. To compare the effectiveness of proposed
scheme we have calculated the recovery time as shown in Fig.3. The comparison of recovery times
is calculated with varying number of faults. Fig.3 shows the recovery times of the proposed
approach as the number of failed agent increases and those of the existing scheme where the
agents are replicated on the basis of condition value. As depicted in Fig.3, the recovery time of the
agents with the proposed mechanism is much smaller than the existing scheme, and the difference
gets bigger as the number of failed agents increases. This is because, different from the existing
scheme, the proposed scheme use parallel antecedence graph approach for recovery.

We next evaluate the processing overhead of the proposed approach. The CPU time (in
milliseconds) is measured assuming reliable environment of no occurrence of faults. Fig.4, shows
the comparison of CPU times assuming no faults. Fig.4 shows the overhead of proposed approach
with the overhead of the existing replication scheme by comparing its CPU time spend for the
entire operation. Note that the proposed approach and existing scheme does not need to spend any
CPU time for recovery because no fault occurs. The difference between the two schemes is
because of different algorithm they are following to identify the faulty agents. In proposed

203

Fig.3 Recovering time with varying number of Faults

approach it is done by introducing watchdog agent doing this matching the internal and external
parameters whereas in existing scheme condition value is calculated based on these parameters.

Fig.4 CPU time in no fault condition

From Fig.5, we can illustrate that the total application message overheads for almost identical for
first few sets of mobile agents and the overhead of existing approach is higher than that of
proposed approach. The difference between these schemes is because of checkpointing
antecedence graph approach for recovery does this by AG piggybacked to messages gets
checkpointed at the occurrence of threshold event, thus reducing the overhead of messages
exchanged.

Lastly, we evaluate the synchronization message overhead of existing and proposed approach.
Fig.6 illustrates the synchronization message overheads for existing and proposed approach. From
Fig.6, we can see that the performance metric for both the approaches, all increases as the number
of MAs increases. This is because Cost of sending messages between two hosts is much larger
than cost of sending a message between agents of same group and cost incurred to locate a MA
and forward a message to or from its group.

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4 5 6

Replication Decision Mechanism Proposed Approach

number of faults

re
co

ve
ry

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

Replication Decision Mechanism Proposed Approach

Number of agents

CP
U

204

Fig.5 Total Application message overhead Comparision

Fig.6 Synchronization message overhead Comparion

PROOF OF CORRECTNESS

Theorem 1. A MA takes a checkpoint if and only if the MA is checkpoint dependent on the initiator.
In the proposed algorithm, only if MA receives a checkpointing request (being identified) it takes a
checkpoint. So we only need to show that the identifying procedure informs MAs if and only if
they are checkpoint dependent on the initiator. Because if an BA finds a wanted MA does not exist
in its cell, it is responsible for forwarding the checkpointing request message to proper MA, which
does not affect the identifying procedure. Therefore, for ease to present, we assume there are no
handoffs in the system. If a MA, say MAj is checkpoint dependent on the initiator, say MAinit,
according to the message exchange procedure, there must exist a DA Є AG of MAinit, so the
identifying procedure is able to inform DAs depending on the entry in antecedence graph. Once a
DA is identified, it is sent CA and then the closure containing set of identified WAs cannot be
changed due to its message exchanges. Before the identifying procedure ends, only one way can
enlarge the closure, that is one of those DAs which belong to the closure set but have not been
identified receives a message from another MA that does not belong to the closure set presently.

0
2
4
6
8

10
12

1 2 3 4 5 6

To
ta

l a
pp

lic
at

io
n

m
es

sa
ge

O

ve
rh

ea
d

Number of Agents

Replication Decision Mechanism Proposed Approach

0

2

4

6

8

10

10 30 60 80 100 120Sy
nc

hr
on

iz
at

io
n

m
es

sa
ge

ov

er
he

ad
 c

om
pa

ris
io

n

Number of agents

Replication Decision Mechanism Proposed Approach

205

Since new message exchanges add corresponding items into antecedence graph of MA, identifying
procedure can still identify such DAs. Similarly, if a MA, say MAj, is not checkpoint dependent on
the initiator, there must exist none of such entry in its antecedence graph as above according to the
message exchange procedure. So it is impossible for MAj being informed by the identifying
procedure if it is not DA.

Theorem 2. The algorithm creates a consistent global checkpoint.
The proposition can be proved by contradiction. Suppose there is a pair of mobile agents, say MAi
and MAj, such that at least one message s has been sent from MAi after its last checkpoint Ci;q and
has been received by MAj before its last checkpoint Cj;p (note that it is an inconsistent state). We
also assume Cj;p is associated with the initiator MAinit checkpoint Cinit;k. Based on Theorem 1, in
the kth checkpointing procedure initiated by MAinit, MAi must take a new checkpoint because it is
checkpoint dependent on MAinit as it is one of the DA Є AG. So the sending event of is recorded at
Ci;q which is a contradiction.

CONCLUSION AND FUTURE WORK

This paper has presented the monitoring and recovery mechanism for the fault tolerant service-
oriented multi-agent system. The watchdog approach monitors the internal state of the mobile
agents such as CPU usage, memory load, and the external state such as communication load, the
exact location of agent and the number of requested messages of the mobile agents. The recovery
mechanism takes place only for the faulty agents identified by watchdog agent as well as number
of rollback messages are reduced through parallel checkpointing approach. Hence, the fall in
recovery time and overhead in fault tolerance has been observed. The effectiveness of the
proposed approach has been verified using the agent based health care service provider system.
The experiment displays that the proposed approach significantly outperforms the existing
approach in terms of recovery latency.

The future work will focus on further enhancing the performance of the proposed scheme by
developing the model properly that will calculate a static value based on internal and external state
of a mobile agent.

REFERENCES

Yang Xiaofan and Tang Yuan Yan, “Efficient Fault Identification of Diagnosable Systems under

the Comparison Model”, IEEE Transactions on Computers, Vol. 56, No. 12, December 2007.
Xu Peng, Deters Ralph, “MAS & Fault-Management”, Proceedings of the 2004 International

Symposium on Applications and the Internet (SAINT’04), 2004.
Choi SungJin, Baik MaengSoon, Kim HongSoo, Yoon JunWeon, Shon∗ JinGon, Hwang

ChongSun,” Region-based Stage Construction Protocol for Fault tolerant Execution of Mobile
Agent”, Proceedings of the 18th International Conference on Advanced Information
Networking and Application (AINA’04), 2004.

Mitrovic Dejan, Budimac Zoran, Ivanovic Mirjana and Vidakovic Milan “ Improving Fault
Tolerance of Distributed Multi-Agent System with Mobile Network Management System” in
Proceedings of the International Multi conference on Computer Science and Information
Technology. ISSN 1896-7094. pp. 217-222.

D.E.Knuth. “The Art of Computer Programming”, Vol. 2.Auerbach Publications, 1998.

206

N.A Lynch., M.Merritt., A. F. W.Weihl, and R. R.Yager, “Atomic Transactions”, Morgan
Kaufmann, 1994.

Dong Yeol Lee, Seung Yeop Shin, and Hee Yong Youn,” Replication Decision Mechanism for
Service-Oriented Multi-Agent System”, IEEE DOI 10.1109/SERVICES-I.2009.

Andrea Bondavalli, J Stankovic, and Lorenzo Strigini,”Adaptable fault tolerance for real-time
systems”. In D. Fussell and M. Malek, editors, Responsive Computer Systems: Steps toward
Fault- Tolerant Real-Time Systems, pages 187-208. Kluwer Academic Publishers, Boston,
1995.

Hiltunen, Matti. A., Schlichting, and Richard. D. “Adaptive distributed and fault-tolerant
systems”, Computer Systems Science and Engineering, 11(5):275--285. CRL, Sept. 1996.

Staffan Hägg, “A sentinel approach to fault handling inmulti-agent systems”, In Proc. of the
Second Australian Workshop on Distributed AI, Cairns, Australia, Aug. 27, 1996.

Keith Decker, Katia Sycara, and Mike Williamson, “Intelligent adaptive information agents”,
Journal of Intelligent Information Systems, vol. 9, 1997, pp. 239 - 260.

Sanjeev Kumar, Philip R. Cohen, and Hector Joseph Levesque, “The adaptive agent architecture:
Achieving fault-tolerance using persistent broker teams”, ICMAS 2000, Boston, MA, July
2000.

Sarit Kraus, V.S. Subrahmanian, N. Cihan, “Probabilistically survivable MASs”, In Proc. of
Eighteenth International JointConference on Artificial Intelligence (IJCAI-03), pp. 789-795,
2003.

Rajwinder Singh and Mayank Dave, “Antecedence Graph Approach to checkpointing for Fault
Tolerance in Mobile Agent System ”IEEE Transactions on Computers, Vol. 62, No. 2,
February2013.

M.M. Khokhar, A. Nadeem, and O.M. Paracha, “An Antecedence Graph Approach for Fault
Tolerance in a Multi-Agent System,”Proc. IEEE Seventh Int’l Conf. Mobile Data Management,
2006.

Flaviu Cristian and San Jose, “Fault-Tolerance in the Advanced Automation System” In 20th
International Conference on Fault-Tolerant Computing, Newcastle upon Tyne, England (1990).

Zahia Guessoum, Jean-pierre Briot, Olivier Marin, Athmane Hamel, and Pierre Sens, “Dynamic
and adaptive replication for large-scale reliable multi-agent systems”, In Software Engineering
for Large-Scale Multi-Agent Systems (SELMAS), LNCS 2603, pp.182-198, April 2003.

Alan Fedoruk and Ralph Deters, “Improving fault-tolerance by replicating agents”, In Proc.
AAMAS-02, Bologna,Italy, pp.737-744, 2002.

Salvatore F. Pileggi, Manuel Esteve “An adaptive and flexible fault tolerance mechanism designed
on multi-behavior agents for Wireless Sensor/Actuator Network” IARIA’07, pp. 283 – 288,
Aug. 2007.

Hyun Ko, Hee Yong Youn, “A new agent characterization model and grouping method for multi-
agent system”, IRI’08, pp.86-91, Jul.2008.

